National Innovation Briefing on «Smart Materials» at Empa
Investment in Intelligent Materials Pays Off
«Intelligent Materials and Systems» is a subject with a future – a fact on which both scientists and politicians are in agreement. However, in these times of economic crisis many Swiss firms are reluctant to invest in research and development, an attitude which the Innovation Promotion Agency (CTI) would like to change. The CTI, together with Empa, therefore invited industrial partners to a national Innovation Briefing on the topic of Smart Materials. The response was excellent.
Caption: Economic tools can be made using intelligent, compliant systems. The gripping arm of this robot is made from a single molding process. |
|||
With over 200 hundred guests drawn from industry and research spending the day at the Empa Academy, being updated on the latest federal supportive measures and learning more about the National Research Program NFP 62 on Smart Materials. Specialists from Empa and other research institutions gave presentations on the newest research projects and showed where opportunities for science and commerce to cooperate might exist. |
|||
«We want to help SMEs, and indeed industry in general, to establish positions in the revolutionary market of the future – intelligent materials,” was how Ingrid Kissling-Naef, the Director of the Innovation Promotion Agency, summarized the aims of the national Innovation Briefing which was held on 13th August. She firmly believed that the innovation theme has the potential to generate numerous new jobs and significantly strengthen the Swiss economy. The Innovation Briefings were initiated by the CTI and several have already taken place, dedicated to such topics as Clean Technologies for Energy and the Environment. They serve to bring together entrepreneurs and scientists with the aim of developing the outline of collaborative projects and taking the first steps in getting them under way. |
|||
Smart Materials offer solutions to many problems |
|||
National Science Foundation and CTI offer financial and organizational assistance |
|||
A wide range of potential applications |
|||
It is not just valves which can be controlled in this manner – novel optical lenses are also at the focus of the attention of smart materials researchers. The ETH startup firm Optotune develops lenses at Empa which can be shaped using “artificial muscles”. The aim is to imitate the way in which the human eye functions. Traditional systems are based on rigid lenses which are positioned mechanically. Thanks to the use of electroactive polymers (EAPs) it is possible to change the shape of the lens itself, thus imitating the functioning of the human eye. The EAPs are activated by the application of an electrical voltage which shapes the lens to give the required curvature. |
|||
|
|||
|
Empa’s airship – the Blimp – moves like a trout through water. EAP actuators are mounted on its body and fins. | ||
|
|||
Artificial muscles are even capable of making fish fly! Recently an eight meter long airship floated through the halls of Empa buildings, moving like a trout through water. EAP actuators are mounted on the hull and the “fins”, and by switching the voltage on and off they are made to expand and contract. The “fish” moves elegantly and silently through the air at a speed of about one meter per second. This kind of airship would be particularly suitable for use as an observation platform for monitoring the environment or wild animals, for example. The principle can also be used to make peristaltic pumps. | |||
Another area of application is for compliant systems, that is systems which are flexible and elastic such as those developed in the course of the Empa and ETH research initiative «kompliant.ch». These are flexible enough to allow large levels of deformation, yet strong enough to withstand large loads. These kind of intelligent materials make it possible to manufacture tools economically, from a single molding process. These tools are geometrically designed so as to support loads without using joints. In contrast to conventional mechanisms, their flexibility is not the result of rigid components sliding over one another but is based on the elastic deformation of the material. | |||
And finally, in Empa’s Engineering Structures Laboratory a research group is using smart materials to successfully counter the effects of oscillation in stayed cable bridges. Together with industrial partners they have developed adaptive vibration dampers. These feedback-controlled “magnetorheological fluid dampers” (MR dampers) modify their damping effect depending on the extent to which the bridge cables are actually swinging. The greater the amplitude of cable oscillation, measured with a motion sensor, the greater the damping forces applied. This helps to avoid breakage of individual strands in the cable due to the effects of fatigue. The adaptive oscillation dampers have so far been installed on the Tudjman Bridge in Dubrovnik and on the Sutong cable stayed bridge over the Yangtze River in China. |
|||
|
|||
|
|||